6,458 research outputs found

    Slow crack propagation through a disordered medium: Critical transition and dissipation

    Full text link
    We show that the intermittent and self-similar fluctuations displayed by a slow crack during the propagation in a heterogeneous medium can be quantitatively described by an extension of a classical statistical model for fracture. The model yields the correct dynamical and morphological scaling, and allows to demonstrate that the scale invariance originates from the presence of a non-equilibrium, reversible, critical transition which in the presence of dissipation gives rise to self organized critical behaviour.Comment: 16 pages, 4 figures, to be published on EPL (http://epljournal.edpsciences.org/

    Random sequential adsorption and diffusion of dimers and k-mers on a square lattice

    Full text link
    We have performed extensive simulations of random sequential adsorption and diffusion of kk-mers, up to k=5k=5 in two dimensions with particular attention to the case k=2k=2. We focus on the behavior of the coverage and of vacancy dynamics as a function of time. We observe that for k=2,3k=2,3 a complete coverage of the lattice is never reached, because of the existence of frozen configurations that prevent isolated vacancies in the lattice to join. From this result we argue that complete coverage is never attained for any value of kk. The long time behavior of the coverage is not mean field and nonanalytic, with t1/2t^{-1/2} as leading term. Long time coverage regimes are independent of the initial conditions while strongly depend on the diffusion probability and deposition rate and, in particular, different values of these parameters lead to different final values of the coverage. The geometrical complexity of these systems is also highlighted through an investigation of the vacancy population dynamics.Comment: 9 pages, 9 figures, to be published in the Journal of Chemical Physic

    Ultracold polarized Fermi gas at intermediate temperatures

    Full text link
    We consider non-zero temperature properties of the polarized two-component Fermi gas. We point out that stable polarized paired states which are more stable than their phase separated counterparts with unpolarized superfluid region can exist below the critical temperature. We also solve the system behavior in a trap using the local density approximation and find gradually increasing polarization in the center of the system as the temperature is increased. However, in the strongly interacting region the central polarization increases most rapidly close to the mean-field critical temperature, which is known to be substantially higher than the critical temperature for superfluidity. This indicates that most of the phase separation occurs in the fluctuation region prior to superfluidity and that the polarization in the actual superfluid is modest.Comment: Final published versio

    Coupling internal atomic states in a two-component Bose-Einstein condensate via an optical lattice: Extended Mott-superfluid transitions

    Full text link
    An ultracold gas of coupled two-component atoms in an optical field is studied. Due to the internal two-level structure of the atoms, three competing energy terms exist; atomic kinetic, atomic internal, and atom-atom interaction energies. A novel outcome of this interplay, not present in the regular Bose-Hubbard model, is that in the single band and tight binding approximations four different phases appear: two superfluid and two Mott phases. When passing through the critical point between the two superfluid or the two Mott phases, a swapping of the internal atomic populations takes place. By means of the strong coupling expansion, we find the full phase diagram for the four different phases.Comment: 9 pages, 7 figure

    Brownian ratchet in a thermal bath driven by Coulomb friction

    Full text link
    The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetric wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demonstrate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We have realized a new granular ratchet experiment where both these ratchet effects are observed, as well as the predicted inversion at their crossover. Our discovery paves the way to the realization of micro and sub-micrometer Brownian motors in an equilibrium fluid, based purely upon nano-friction.Comment: main paper: 4 pages and 4 figures; supplemental material joined at the end of the paper; a movie of the experiment can be viewed http://www.youtube.com/watch?v=aHrdY4BC71k ; all the material has been submitted for publication [new version with substantial changes in the order of the presentation of the results; differences with previous works have been put in evidence

    Relaxed Operational Semantics of Concurrent Programming Languages

    Full text link
    We propose a novel, operational framework to formally describe the semantics of concurrent programs running within the context of a relaxed memory model. Our framework features a "temporary store" where the memory operations issued by the threads are recorded, in program order. A memory model then specifies the conditions under which a pending operation from this sequence is allowed to be globally performed, possibly out of order. The memory model also involves a "write grain," accounting for architectures where a thread may read a write that is not yet globally visible. Our formal model is supported by a software simulator, allowing us to run litmus tests in our semantics.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244
    corecore